3MLJ

Reduced (Cu+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound carbon monooxide (CO)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.210 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Differential reactivity between two copper sites in peptidylglycine alpha-hydroxylating monooxygenase

Chufan, E.E.Prigge, S.T.Siebert, X.Eipper, B.A.Mains, R.E.Amzel, L.M.

(2010) J Am Chem Soc 132: 15565-15572

  • DOI: https://doi.org/10.1021/ja103117r
  • Primary Citation of Related Structures:  
    3MIB, 3MIC, 3MID, 3MIE, 3MIF, 3MIG, 3MIH, 3MLJ, 3MLK, 3MLL

  • PubMed Abstract: 

    Peptidylglycine α-hydroxylating monooxygenase (PHM) catalyzes the stereospecific hydroxylation of the Cα of C-terminal glycine-extended peptides and proteins, the first step in the activation of many peptide hormones, growth factors, and neurotransmitters. The crystal structure of the enzyme revealed two nonequivalent Cu sites (Cu(M) and Cu(H)) separated by ∼11 Å. In the resting state of the enzyme, Cu(M) is coordinated in a distorted tetrahedral geometry by one methionine, two histidines, and a water molecule. The coordination site of the water molecule is the position where external ligands bind. The Cu(H) has a planar T-shaped geometry with three histidines residues and a vacant position that could potentially be occupied by a fourth ligand. Although the catalytic mechanism of PHM and the role of the metals are still being debated, Cu(M) is identified as the metal involved in catalysis, while Cu(H) is associated with electron transfer. To further probe the role of the metals, we studied how small molecules such as nitrite (NO(2)(-)), azide (N(3)(-)), and carbon monoxide (CO) interact with the PHM copper ions. The crystal structure of an oxidized nitrite-soaked PHMcc, obtained by soaking for 20 h in mother liquor supplemented with 300 mM NaNO(2), shows that nitrite anion coordinates Cu(M) in an asymmetric bidentate fashion. Surprisingly, nitrite does not bind Cu(H), despite the high concentration used in the experiments (nitrite/protein > 1000). Similarly, azide and carbon monoxide coordinate Cu(M) but not Cu(H) in the PHMcc crystal structures obtained by cocrystallization with 40 mM NaN(3) and by soaking CO under 3 atm of pressure for 30 min. This lack of reactivity at the Cu(H) is also observed in the reduced form of the enzyme: CO binds Cu(M) but not Cu(H) in the structure of PHMcc obtained by exposure of a crystal to 3 atm CO for 15 min in the presence of 5 mM ascorbic acid (reductant). The necessity of Cu(H) to maintain its redox potential in a narrow range compatible with its role as an electron-transfer site seems to explain the lack of coordination of small molecules to Cu(H); coordination of any external ligand will certainly modify its redox potential.


  • Organizational Affiliation

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, and Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland 21205, United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Peptidyl-glycine alpha-amidating monooxygenase314Rattus norvegicusMutation(s): 0 
Gene Names: Pam
EC: 1.14.17.3 (PDB Primary Data), 4.3.2.5 (UniProt)
UniProt
Find proteins for P14925 (Rattus norvegicus)
Explore P14925 
Go to UniProtKB:  P14925
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP14925
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 5 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download Ideal Coordinates CCD File 
H [auth A],
I [auth A],
J [auth A]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
CU
Query on CU

Download Ideal Coordinates CCD File 
B [auth A],
C [auth A]
COPPER (II) ION
Cu
JPVYNHNXODAKFH-UHFFFAOYSA-N
ACT
Query on ACT

Download Ideal Coordinates CCD File 
G [auth A]ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
NI
Query on NI

Download Ideal Coordinates CCD File 
D [auth A]NICKEL (II) ION
Ni
VEQPNABPJHWNSG-UHFFFAOYSA-N
CMO
Query on CMO

Download Ideal Coordinates CCD File 
E [auth A],
F [auth A]
CARBON MONOXIDE
C O
UGFAIRIUMAVXCW-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.210 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 69.226α = 90
b = 68.86β = 90
c = 81.744γ = 90
Software Package:
Software NamePurpose
REFMACrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-03-02
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.3: 2024-11-06
    Changes: Structure summary